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The role of artificial intelligence 
(AI) in radiation oncology has 
increased dramatically in the 

past 5 years, touching nearly every as-
pect of our field. Artificial intelligence 
can be broadly defined as “the use of a 
machine (computer) to perform tasks 
that typically require human thought.”1 
In radiation oncology, these tasks 
were previously limited to highly re-
petitive actions that could be scripted 
in common programming languages. 
Recently, though, as the widespread 
accessibility of powerful computing 
resources has enabled the utilization of 
machine learning, researchers are find-
ing novel applications for AI in many 
aspects of radiation oncology previ-
ously thought impossible. 

Machine learning techniques can be 
defined as algorithms that yield output 
from a given input without specific in-
structions. The algorithms “learn” by 
detecting underlying patterns in the 
input data. This period of learning is 
called model training. Training can be 

supervised (where the model is gener-
ated to produce known output) or unsu-
pervised (where the model determines 
its own output based on the data itself).1 
Deep learning is a specific type of ma-
chine learning that utilizes an artificial 
neural network that models human neu-
rocognitive design to simulate human 
thought and understanding. Deep-learn-
ing architectures have several hidden 
layers that process input data through 
deeper levels of abstraction to learn 
patterns and produce output.2 The pat-
terns or “features” are often complex 
and nonlinear in nature.2,3 One of the 
more common types of deep-learning 
methodologies for image-based tasks is 
a convolutional neural network (CNN). 
First introduced to nonmedical image 
classification by Krizhevsky et al in 
2012,4 CNNs convolve input data with 
multiple filters or “kernels” to produce 
progressively more abstract represen-
tations of the input data. Many AI ap-
plications in radiation oncology utilize 
some variation of the CNN. 

The purpose of this article is to re-
view recent advancements in AI as they 
specifically pertain to head and neck 
radiation oncology. Although some 
technical details regarding AI tech-
niques will be discussed, the main focus 
will be application and clinical impact  
of these techniques. Specifically, this 
article will focus on the following  

applications: autosegmentation of or-
gans at risk (OARs), autosegmentation 
of target volumes, treatment planning 
and predictive dose calculation, im-
age-guided adaptive radiation therapy, 
prognosis and outcome prediction, and 
quality assurance. For more granular de-
tail about AI methodologies in radiation 
oncology, the reader is referred to the ex-
cellent review articles cited here.1-3,5,6 

Organ-at-Risk Segmentation
OAR segmentation is an ideal task for 

automation due to its repetitive nature and 
the common geometric properties of nor-
mal anatomy shared among all members 
of the population. Furthermore, manual 
delineation of head and neck OARs is 
tedious and prone to variation among 
multiple observers.7 Early attempts at 
automatic OAR segmentation involved 
a posteriori region-growing and edge-de-
tection approaches. Following this early 
work, automatic OAR segmentation was 
accomplished with single- or multi-atlas-
based techniques that utilized deform-
able image registration to warp contours 
from a similar atlas patient to the current 
patient.8,9 Such atlas-based approaches 
are now widely available as commercial 
products by multiple vendors. 

Recently, researchers have assessed 
the use of machine learning in OAR seg-
mentation with impressive results. Sev-
eral authors have shown improvements 
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in volume overlap with “ground truth” 
contours using models trained on com-
puted tomography (CT) datasets.10-16 In 
these studies, “ground truth” contours 
typically consisted of expert contours 
or consensus contours from public data-
bases. Metrics to compare automatically 
segmented volumes with ground truth 
included variations of the Dice similarity 
coefficient index (DSC), Hausdorff dis-
tance, or average surface distance.6 Not 
only were OARs more accurate, they 
were also generated faster using AI. 

Van Dijk et al reported significantly 
improved results using a deep-learning 
approach relative to atlas-based au-
tosegmentation for 19 of 22 head and 
neck OARs.11 The deep-learning ar-
chitecture consisted of multiple CNNs 
trained on a relatively large database 
of more than 500 CT image sets. Fur-
thermore, human observers found that 
CNN-based contours generated fewer 
obvious errors than atlas-based autoseg-
mentation (9% vs 30%, respectively) 
and, for most OARs, were found to re-
quire less correction than atlas-based 
segmentation. This algorithm is one of 
the few commercial deep-learning seg-
mentation tools and is known by the 
brand name DLCExpert (Mirada Med-
ical, Ltd.). 

Though less common than CT, 
researchers have also investigated 
autosegmentation on other imaging mo-
dalities such as MRI. Yang et al focused 
on segmentation of the parotid gland in 
pre- and post-treatment treatment MRI 
to better quantify changes in parotid 
volume. The authors used support vec-
tor machine classification to train the 
15-patient model. T1- and T2-weighted 
postcontrast MRIs were acquired pre-
treatment and at 3-, 6-, and 12-month 
intervals after treatment. Overlap with 
physician-drawn parotid contours was 
over 90% for both parotid glands in fol-
low-up MRI scans and autosegmented 
contours highlighted a 25% reduction in 
parotid volume at 3 months.17

Target Segmentation
Automatic segmentation of gross 

tumor volumes (GTVs) and clinical tar-
get volumes (CTVs) is more difficult 
than that of OARs due to the inherently 
abnormal nature of the anatomy, but 
potentially yields benefits in reducing 
delineation variability and increasing 
efficiency. Cardenas et al have written 
several papers on automatic CTV delin-
eation in head and neck cancers.18-20 In 
their first 2018 publication, the authors 
used manually segmented GTVs from 
52 node positive and negative oropha-
ryngeal patients to train a deep-learning 
model to generate high-risk CTVs with 
a nonuniform margin. The deep-learn-
ing model showed good overlap with 
manually segmented ground truth CTVs 
(mean DSC range from 0.755 to 0.840 
for all pathologies).20 In their second 
paper, the authors used a CNN to train 
a CTV-generating model on 285 oro-
pharyngeal patients and compared its 
performance to atlas-based segmenta-
tion. Overlap DSC was 0.816 for deep 
learning and 0.739 for atlas-based seg-
mentation.19 In their most recent paper, 
the authors focused specifically on nodal 
CTVs by training a new model with 51 
head and neck patients of varying pri-
mary site. Node level volumes were 
contoured and used as input in the CNN 
deep-learning architecture. The DSC for 
nodal CTVs ranged from 0.843 to 0.909 
compared to ground truth and, qualita-
tively, more than 99% were scored as ac-
ceptable by a panel of 3 experts.18

In a study aimed at contouring GTV 
(split into primary and nodal volumes) 
and CTV for nasopharyngeal cancer, 
Men et al set a deep deconvolutional 
neural network (with an added decon-
volution step at the end of the network 
to restore some high-resolution features) 
against a conventional CNN.21 The au-
thors demonstrated significantly better 
overlap with ground truth for all targets 
using the experimental architecture 
(82.6% and 80.9% vs 73.7% and 72.3% 

for CTV and GTV primary, respec-
tively), but nodal GTV lagged in per-
formance at 62.3%. Although this was 
better than 33.7% with the conven-
tional CNN, the authors highlighted a 
few reasons for the deficiency, includ-
ing lack of clear anatomical boundar-
ies, variable target locations, and poor 
contrast on CT.21 

The lack of contrast on CT can be mit-
igated by adding a second modality with 
supplementary information such as pos-
itron emission tomography (PET)/CT. 
Guo et al used a 3D CNN to develop a 
model to segment GTV using CT sim-
ulation and registered diagnostic PET/
CT. The model was trained using 140 
patients with squamous cell carcinoma 
whose PET was deformably registered 
to simulation CT. Three models were 
created: CT alone, PET alone, and CT 
simulation with registered PET. The 
combined PET/CT model outperformed 
CT alone and PET alone by 0.4 and 0.05 
in mean overlap metrics, respectively, 
demonstrating the advantage of incor-
porating functional information into the 
model.22 Berthon et al proposed a deci-
sion tree that, through machine learning, 
would select from multiple automatic 
segmentation algorithms. The decision 
tree was tested on 20 oropharyngeal pa-
tients and segmented GTVs overlapped 
with manually drawn ground truth with a 
DSC of 0.77.23 

Treatment Planning and  
Predictive Dose Calculation

The first step of the treatment plan-
ning process is CT simulation. For 
years, physicists have been researching 
ways to replace CT simulation with 
MRI simulation because of MRI’s su-
perior soft-tissue contrast. The larg-
est hurdle in replacing CT with MRI 
is arguably the loss of electron density 
information provided in CT that is used 
in dose calculation. Like automatic seg-
mentation, earlier approaches to “syn-
thetic” CT generation (electron density 
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maps produced from MRI) began with 
thresholding methods and atlas-based 
deformable image registration. Re-
searchers are now using deep learning 
to produce synthetic CTs. Dinkla et al 
rationalize the need for MRI-based plan-
ning in head and neck cancer in the con-
text of MR-guided linear accelerators. 
Thirty-four head and neck cancer pa-
tients received CT simulation and large 
field of view T2-weighted MRI on a 3T 
scanner. Average absolute errors were 
75 ± 9, 214 ± 26, 35 ± 3, and 130 ± 24 
HU for body, bone, soft tissue, and air, 
respectively. The authors speculate that 
HU values for bone in synthetic CT are 
slightly lower than actual CTs due to 
registration errors between CT and MRI. 
Dose distributions calculated on syn-
thetic CT were within 1% of dose cal-
culated on actual CT voxel by voxel.24 
Klages et al performed a similar study 
comparing 23 patients in two general ad-
versarial networks to generate synthetic 
CT. Mean absolute HU errors and dosi-
metric errors were comparable to Dinkla 
et al, but the authors found that combin-
ing results from three orthogonal views 
decreased HU errors.25

Automated treatment planning is an-
other potential application of AI. Cur-
rently, commercial knowledge-based 
planning systems use the relative geom-
etry of targets and OARs in previously 
treated patients to predict the dose-vol-
ume histograms for de novo patients.26 
Machine learning is being applied to 
dose prediction as well, with the goal 
that more accurate dose prediction will 
yield inverse optimization parameters 
to speed up the planning process. Chen 
et al used 70 nasopharyngeal cancer pa-
tients who had been treated with 6 MV 
step-and-shoot intensity-modulated ra-
diation therapy (IMRT) to train a CNN-
based dose prediction model. A unique 
aspect of this model was that the authors 
tested a general model against a modi-
fication that specifically identified out-
of-field voxels to potentially increase 
accuracy near the edges of beams. The 

model was then tested against 10 ad-
ditional nasopharyngeal patients and 
the predicted dose was compared voxel 
by voxel against the clinical treatment 
plan. For most regions of interest, the 
models performed comparably, but the 
“out-of-field” modification significantly 
improved agreement for the smaller re-
gions of interest such as chiasm, lenses, 
and optic nerves.27 In a more recent 
paper, the same group compared two 
CNN-based dose prediction models 
specifically for helical tomotherapy. 
The models were CResDevNet and a 
standard U-Net architecture. Using 136 
nasopharyngeal treatment plans and 24 
validation plans, the models were tested 
against 60 patients. The mean absolute 
error with clinical plans was between 
3.2 ± 2.5% and 3.7 ± 2.9% for the CRes-
DevNet and U-Net, respectively. CRes-
DevNet also had a slight advantage with 
the majority of OARs when the overlap 
of dose-volume histogram curves was 
measured.28 

Adaptive Radiation Therapy
Adaptive radiation therapy is a spe-

cialized form of image-guided radiation 
therapy frequently used in head and neck 
treatment sites due to the significant an-
atomical changes that can occur over the 
course of treatment. Currently, adaptive 
radiation therapy usually uses an “of-
fline” approach. The physician may set 
a predefined trigger point, perhaps half-
way through treatment, where the plan 
will be re-evaluated based on localization 
imaging such as cone-beam CT (CBCT) 
and adapted to current anatomy if neces-
sary. The physician may also call for ad 
hoc adaptation based on changes seen in 
image guidance or on-treatment visits. 
In offline adaptive therapy, the patient 
receives a new CT simulation and a new 
plan is generated for the remaining frac-
tions. This is extremely time-consuming 
and labor-intensive as the entire treat-
ment planning process must be repeated 
with the new CT. Although training AI 
models requires substantial time upfront, 

increased operational speed yields signif-
icant benefit to offline adaptive radiation 
therapy and opens the possibility of “on-
line” adaptive radiation therapy where 
the plan is adapted immediately after 
localization imaging is acquired and the 
patient remains on the table. Without the 
increased computational speed that ma-
chine learning provides, the feasibility of 
online adaptation is questionable. 

Tong et al investigated the use of 
adversarial networks for OAR seg-
mentation on both CT simulation and 
low-field MRI acquired on an MR-
guided linear accelerator for online 
adaptation of image-guided therapy. 
The CT model was trained on 48 pa-
tients from the RTOG 522 dataset and 
the MRI model was trained on 25 MRI 
volumes acquired on the MRIdian sys-
tem (ViewRay). The authors found that 
the adversarial network that included 
multiple integrated neural networks 
(SC-GAN-DenseNet) performed better 
than other models for both CT and low-
field MRI. This is particularly notable 
given the low signal-to-noise environ-
ment of low-field MRI and the short 
contouring time for the deep-learning 
model (approximately 14 seconds com-
pared to 30 minutes for the comparable 
model-based algorithm).16 Although 
not currently a focus in head and neck 
applications, intrafraction motion man-
agement may also benefit from fast 
contour propagation in MR-guided lin-
ear accelerators with continuous image 
monitoring during treatment.29 

Guidi et al deformably registered 
daily localization MVCT or kV CBCT 
to CT simulations to measure the 
changes in dose due to changing anat-
omy over time. The authors focused 
on parotid glands as they are prone to 
substantial changes during the course 
of treatment. Using a support vector 
machine, changes in parotid volume 
were classified into categories ranging 
from “Correct Treatment” where plan-
ning was not necessary to “Suggested 
Replanning” where changes indicate 
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replanning would mitigate suboptimal 
dosimetric changes. The authors in-
cluded additional classifications to alert 
users of abnormal changes in volume 
data that are either extreme anatomical 
fluctuations or artifactual. The authors 
found that, by the fourth week of treat-
ment, approximately 55% of patients 
required retreatment. The authors vali-
dated their approach by comparing their 
classification to physician judgment and 
found good concordance between the 
model and physicians.30

One of the few commercial online im-
age-guided adaptive therapy solutions 
is the Ethos platform by Varian. Built 
on Halcyon hardware, the Ethos system 
contains proprietary deep-learning AI 
that drives online adaptation of the plan 
from iteratively reconstructed kV CBCT. 
In a recent publication, the authors 
(Varian employees) vaguely describe the 
deep-learning algorithm as CNN-based 
similar to U-net and DenseNet. After tar-
gets and organs at risk are propagated to 
current anatomy, the plan is reoptimized 
while the patient is on the treatment 
table.31 Though numerous abstracts were 
presented at recent national meetings 
about this adaptive platform, few manu-
scripts on clinical user experiences have 
yet been published. 

Outcome Prediction
Outcome prediction is another appli-

cation of AI in head and neck radiation 
therapy. Several authors have explored 
normal tissue complication probability 
(NTCP) prediction of xerostomia and 
dysphagia with machine learning meth-
ods.32-34 Lee et al used quality of life 
surveys to identify the most influential 
predictive factors in a multivariable xe-
rostomia model in squamous cell carci-
noma and nasopharyngeal carcinoma. 
Interestingly, the authors found that, 
in addition to ipsilateral and contralat-
eral parotid dose, features such as age, 
T-stage, financial status, and educa-
tion were also significant predictors of
xerostomia.32,33 Dean et al built three

dysphagia machine learning models 
based on prior work35 with 173 patients 
for training and 90 patients for validation 
from a variety of head and neck disease 
sites and several institutions. Dysphagia 
was scored using CTCAE version 3 and 
dose to the pharyngeal mucosa was con-
sidered along with other clinical factors. 
The authors compared models trained 
with dose-volume data alone vs inclusion 
of spatial dose information. The authors 
found that spatial dose information did 
not improve NTCP modeling of dyspha-
gia and therefore recommended the stan-
dard model that includes dose-volume 
information only, with the caveat that 
different spatial dose metrics may pro-
duce different results.34

Research in radiomics, the study of 
hundreds or thousands of subtle features 
within regions of interest contoured on 
diagnostic imaging, has been acceler-
ated by machine learning algorithms.36 
Ren et al developed a model to differen-
tiate between stage I-II and stage III-IV 
squamous cell carcinoma by extract-
ing 970 radiomic features from multis-
equence MRI.37 Van Dijk et al used the 
90th percentile of the MRI signal from 
pretreatment T1-weighted MRI to pre-
dict xerostomia.38 Gabryś et al compared 
conventional NTCP prediction models 
of xerostomia with machine learning 
models that included a variety of user-se-
lected radiomic and dosiomic features. 
Xerostomia was split into early, late, and 
long-term time periods, with acceptable 
predictive success occurring only for 
long-term toxicity. Small parotids with 
steep dose gradients in the lateral direc-
tion were more prone to xerostomia. The 
authors suggested this may be caused 
by the changes in anatomy during treat-
ment, pulling the smaller glands close to 
high dose regions.39 If this is true, such a 
finding would support the need for adap-
tive therapy as described above.

Quality Assurance
The use of machine learning in medical 

physics quality assurance procedures is 

rooted in the idea that physics resources 
are scarce and should be allocated where 
they can make the most impact. In other 
words, tasks that can be automated 
should be automated so that physicists, 
like physicians, can concentrate on tasks 
that truly require expert human judg-
ment. Several authors have investigated 
the utility of machine learning in identi-
fying plan parameter outliers,40 finding 
erroneous contours,41 calculating output 
factors in proton therapy,42 predicting 
MLC leaf position errors,43 and predict-
ing gamma index passing rates in IMRT 
QA.44-48 

In their 2016 paper, Valdes et al 
state their intent to create virtual IMRT 
QA46 where planners would be able to 
predict the gamma indices of a given 
plan before running the QA, poten-
tially avoiding overmodulated plans 
and ultimately saving time. This is 
particularly applicable to head and 
neck treatment plans as they tend to be 
more complex than other anatomical 
sites. The authors began by training a 
generalized linear model with Pois-
son regression and LASSO regular-
ization on nearly 500 Eclipse-based 
treatment plans (Varian) for a variety 
of sites.46 The authors then augmented 
this model with portal dosimetry mea-
surements from a different institution47 
and, in their most recent publication, 
updated their 500-plan model using 
a CNN called VGG-16. The authors 
found comparable results between 
the CNN and their Poisson-regres-
sion model, although the CNN yielded 
several advantages over the Poisson 
model including calculation speed 
(after model training) and indepen-
dence from user-selected features.48

Limitations of Artificial Intelligence in 
Radiation Therapy 

There is tremendous potential in AI-
based approaches to solving our most 
pressing problems in head and neck 
radiation therapy. There are, however, 
limitations to what AI can currently 
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accomplish. Image reconstruction pa-
rameters, for example, significantly 
impact the performance of image-based 
AI algorithms for CT,49,50 PET,51 and 
MRI.52 Quality of autosegmentation 
and radiomics analysis is dependent on 
the accuracy of ground truth contours, 
which are typically drawn by physi-
cians prone to intra- and interobserver 
variation.53 Deep-learning algorithms 
are abstract by nature and the source 
of errant results can be difficult to pin-
point.2,3,54 Large high-quality datasets 
are required for adequate training and 
validation of deep-learning algorithms 
to prevent overfitting.2,5,54 Even with an 
adequate sample, deep-learning tech-
niques can be fooled by subtle changes 
in imaging,2 which is potentially trou-
bling if imaging artifacts occur. Given 
the “black box” nature of artificial in-
telligence, thorough validation proce-
dures are required to ensure models are 
yielding reasonable results. Regulators 
are understandably cautious about certi-
fying such powerful and complex tools 
for clinical use, which may explain the 
relatively limited number of commer-
cially available AI tools.

Conclusion
Advancements in AI continue at 

a rapid pace. Given the plethora of 
digital data generated for patients un-
dergoing head and neck radiation 
therapy, radiation oncology is well 
positioned to harness the power of 
machine learning and deep learning to 
improve decision-support algorithms, 
autosegmentation, treatment plan-
ning, outcome prediction, and quality 
assurance. Although few commercial 
products exist using AI technology,  
it is only a matter of time until such 
products are available. It will be incum-
bent upon us as medical professionals 
to familiarize ourselves with the basics 
of AI so we may shine a light in the 
“black box” and provide the most in-
telligent care (artificial or otherwise) to 
our patients. 
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